📦 haribo's box
Search (cmd/ctrl+k)
Search
Dark mode
Light mode
Explorer
1 Structure
1 models of the particulate nature of matter
1.1 introduction to the particulate nature of matter
1.1.1 elements, compounds and mixtures
1.1.2 the kinetic molecular theory
1.1.3 kinetic energy and temperature
1.2 the nuclear atom
1.2.1 the atomic model
1.2.2 isotopes
1.2.3 mass spectra (HL)
1.3 electron configurations
1.3.1 and 1.3.2 emission spectra
1.3.3, 1.3.4, and 1.3.5 electron configuration
1.3.6 and 1.3.7 ionisation energies (HL)
1.4 counting particles by mass - the mole
1.4.1 the mole as the unit of amount
1.4.2 relative atomic mass and relative formula mass
1.4.3 molar mass
1.4.4 empirical and molecular formulas
1.4.5 molar concentration
1.4.6 Avogadro's law
1.5 ideal gases
1.5.1 the ideal gas model
1.5.2 real gases
1.5.3 and 1.5.4 the ideal gas laws
2 models of bonding and structure
2.1 the ionic model
2.1.1 and 2.1.2 the ionic bond
2.1.3 ionic structures and properties
2.2 the covalent model
2.2.1 covalent bonding, octet rule and Lewis formulas
2.2.2 single, double and triple covalent bonds
2.2.3 coordination bonds
2.2.4 the valence shell electron pair repulsion (VSEPR) model
2.2.5 bond polarity
2.2.6 molecular polarity
2.2.7 covalent network structures
2.2.8 and 2.2.9 intermolecular forces
2.2.10 intermolecular forces and chromatography
2.2.11 resonance structures (HL)
2.2.12 benzene (HL)
2.2.13 molecules with an expanded octet (HL)
2.2.14 formal charge (HL)
2.2.15 sigma and pi bonds (HL)
2.2.16 hybridisation (HL)
2.3 the metallic model
2.3.1 and 2.3.2 metallic bond
2.3.3 transition elements (HL)
2.4 from models to materials
2.4.1 the bonding triangle
2.4.2 application of the bonding triangle
2.4.3 alloys
2.4.4 polymers
2.4.5 addition polymers
2.4.6 condensation polymers (HL)
3 classification of matter
3.1 the periodic table - classification of elements
3.1.1 periods, groups and blocks
3.1.2 periodicity and electron configuration
3.1.3 periodicity in properties of elements
3.1.4 periodicity in reactivity
3.1.5 metal and non-metal oxides
3.1.6 oxidation states
3.1.7 discontinuities in patterns of first ionisation energy (HL)
3.1.8 characteristic properties of transition elements (HL)
3.1.9 variable oxidation states (HL)
3.1.10 coloured complexes (HL)
3.2 functional groups - classification of organic compounds
3.2.1 structural representations of organic molecules
3.2.2 functional groups and classes of compounds
3.2.3 and 3.2.4 homologous series
3.2.5 IUPAC nomenclature
3.2.6 structural isomers
3.2.7 stereoisomers (HL)
3.2.8 mass spectrometry (HL)
3.2.9 infrared spectroscopy (HL)
3.2.10 and 3.2.11 nuclear magnetic resonance (NMR) spectroscopy (HL)
3.2.12 combining analytical techniques
2 Reactivity
1 what drives chemical reactions?
1.1 measuring enthalpy changes
1.1.1 chemical reactions involve heat transfers
1.1.2 endothermic and exothermic reactions
1.1.3 energetic stability and the direction of change
1.1.4 measuring enthalpy changes
1.2 energy cycles in reactions
1.2.1 bond enthalpy
1.2.2 Hess's law
1.2.3 standard enthalpy changes of combustion and formation (HL)
1.2.4 calculating enthalpy changes (HL)
1.2.5 Born-Haber cycles (HL)
1.3 energy from fuels
1.3.1 combustion reactions
1.3.2 incomplete combustion of organic compounds
1.3.3 fossil fuels
1.3.4 biofuels
1.3.5 fuel cells
1.4 entropy and spontaneity (HL)
1.4.1 entropy (HL)
1.4.2 Gibbs energy (HL)
1.4.3 ∆G and spontaneity (HL)
1.4.4 ∆G and equilibrium (HL)
2 how much, how fast and how far?
2.1 how much? the amount of chemical change
2.1.1 chemical equations
2.1.2 using mole ratios in equations
2.1.3 limiting reactant and theoretical yield
2.1.4 percentage yield
2.1.5 atom economy
2.2 how fast? the rate of chemical change
2.2.1 rate of reaction
2.2.2 collision theory
2.2.3, 2.24 and 2.25 factors that influence the rate of reaction
2.2.6, 2.2.7 and 2.2.8 reaction mechanisms
2.2.9 and 2.2.10 rate equations
2.2.11 the rate constant, k
2.2.12 and 2.2.13 the Arrhenius equation
2.3 how far? the extent of chemical change
2.3.1 dynamic equilibrium
2.3.2 and 2.3.3 equilibrium law
2.3.4 Le Chatelier's principle
2.3.5 the reaction quotient, Q
2.3.6 quantifying the composition of equilibrium
2.3.7 measuring position of equilibrium
3 what are the mechanisms of chemical change?
3.1 proton transfer reactions
3.1.1 and 3.1.2 Bronsted-Lowry acids and bases
3.1.3 amphiprotic species
3.1.4 the pH scale
3.1.5 the ionic product constant of water
3.1.6 strong and weak acids and bases
3.1.7 neutralisation reactions
3.1.8 pH curves
3.1.9 the pOH scale (HL)
3.1.10 and 3.1.11 acid and base dissociation constants (HL)
3.1.12 pH of salt solutions (HL)
3.1.13 pH curves revisited (HL)
3.1.14 and 3.1.15 acid-base indicators (HL)
3.1.16 buffer solutions (HL)
3.1.17 buffer composition (HL) and pH
3.2 electron transfer reactions
*3.2.10 reduction of functional groups in organic compounds
*3.2.11 reduction of unsaturated compounds
3.2.1 redox reactions
3.2.2 half-equations
3.2.3 trends in ease of oxidation and reduction of elements
3.2.4 oxidation of metals by acids
3.2.5 comparing voltaic and electrochemical cells
3.2.6 primary (voltaic) cells
3.2.7 secondary (rechargeable) cells
3.2.8 electrolytic cells
3.2.9 oxidation of functional groups in organic compounds
3.2.12 the standard hydrogen electrode (HL)
3.2.13 standard electrode potentials
3.2.14 electrode potentials and Gibbs energy changes (HL)
3.2.15 electrolysis of aqueous solutions (HL)
3.2.16 electroplating (HL)
3.3 electron sharing reactions
3.3.1 radicals
3.3.2 homolytic fission
3.3.3 radical substitution reactions of alkanes
3.4 electron-pair sharing reactions
3.4.1 nucleophiles
3.4.2 nucleophilic substitution reactions
3.4.3 heterolytic fission
3.4.4 electrophiles
3.4.5 electrophilic addition of alkenes
3.4.6 lewis acids and lewis bases (HL)
3.4.8 complex ions (HL)
3.4.9 and 3.4.10 sn1 and sn2 nucleophilic substitution mechanisms (HL)
3.4.11 electrophilic substitution mechanism (HL)
3.4.12 addition of hydrogen halides to asymmetrical alkenes (HL)
3.4.13 electrophilic substitution of benzene (HL)
conventions
Equations and physical constants
eyes go wow
Green Chemistry
Home
❯
2 Reactivity
❯
3 what are the mechanisms of chemical change
❯
3.2 electron transfer reactions
Folder: 2-Reactivity/3-what-are-the-mechanisms-of-chemical-change/3.2-electron-transfer-reactions
16 items under this folder.
27 Feb 2025
3.2.9 oxidation of functional groups in organic compounds
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.8 electrolytic cells
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.7 secondary (rechargeable) cells
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.6 primary (voltaic) cells
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.5 comparing voltaic and electrochemical cells
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.4 oxidation of metals by acids
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.3 trends in ease of oxidation and reduction of elements
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.2 half-equations
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.16 electroplating (HL)
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.15 electrolysis of aqueous solutions (HL)
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.14 electrode potentials and Gibbs energy changes (HL)
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.13 standard electrode potentials
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.12 the standard hydrogen electrode (HL)
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
3.2.1 redox reactions
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
*3.2.11 reduction of unsaturated compounds
chem
whatarethemechanismsofchemicalchange
27 Feb 2025
*3.2.10 reduction of functional groups in organic compounds
chem
whatarethemechanismsofchemicalchange